Guitar Pedal Board

I really make a point to try to learn something new with each maker project I do. Whether it’s a woodworking project, a guitar effect, or some other hobby project, I want to add in at least something new to each one. First, it just keeps things from feeling redundant. But also it helps to expand my skills.

Steel and plywood pedal board

I’ve needed to make a guitar pedal board for a couple of years now. Mostly just to clean up the corner of my office where my amp and effects sit. It’s not like I’m ever going on tour or anything. I figured the metal frame I made in my intro to metalworking class would be fun to use as a basis for a pedal board. Up until now, it’s just been sitting in our garage; leaning against a wall. Of course, the more I started planning, I quickly realized it was really just a decoration around an otherwise wooden stool (albeit a short and slanted stool; that’s really all this is). I had wanted to put a shallow rabbet around the edge of the board so the top of the steel frame would be flush with the wood. I tried using both a router bit and my table saw and both were pretty much complete failures. Oddly enough, the sample board I tried on the router worked fine, but that was with the veneer grain running along the direction of the rabbet. When I tried using parallel grain on the “real” board, it just shredded the veneer. The table saw gave a cleaner cut but was just far less accurate (and wasn’t much cleaner than the router).1

Cheap router bit and sloppy woodworking don’t result in clean rabbets, I guess

So, I basically just build my pedal board out of 3/4″ plywood to dimensions that I could slide the metal frame over it. The pedals don’t sit entirely flat, but they work fine for my needs still. I still need to get some more Velcro tape to attach them (which would just mainly help allow me to up the power cords underneath). It’s probably a bit too tall to be very practical and I’ll almost certainly replace it at some point. Whether or not I try to include the metal frame is another matter…

So it doesn’t really begin to hold all my guitar pedals (note those sitting on top of the speaker cabinet)
  1. I fully attribute both of these failures to my own inexperience. It doesn’t help that I have some very basic setups and things like featherboards, zero clearance inserts, etc. would also help actually accomplish what I had in mind. []

Recycled Tool Stand

Ten years ago – not long after we moved into this house – my younger brother and I built a pair of workbenches. I designed a “tall” work bench for standing and a “short” work bench that I could sit at (aka, a desk). The idea was that I’d do electronics or other work at the desk. However, “near woodworking tools” is a pretty lousy place to do soldering , etc. and this ended up just being a place to pile scraps and store my drill press, band saw, and power sander. Unfortunately, to use any of those then, I had to haul it out of the corner and put it on another space. They’re not terribly heavy but none of this was ideal. So I had decided I’d tear out the “low” bench and put rolling tool stands in that space. If I’m going to move these tools out to use them, it should at least be easier to do!

Thursday morning, I just so happened on Facebook to catch that my neighbor posted he was giving away an old rolling stand. It looked perfect so I drove over (two blocks away) to grab it. Pretty quickly though I realized this was for far larger tools than I own.1 I couldn’t even shut the door on the Pilot! Fortunately, Angela was out of town so she didn’t need to park in the garage. Yesterday, I tore out most of that “low” bench in order to be able to park the stand in place. You can see that it took up almost the entire 4′ x 3′ space! Those slanted legs were fine for a very heavy piece of equipment, but my Ryobi band saw and Wen power sander weigh maybe 80 lbs combined. I did need to bend one of the caster mounts such that it was level with the others. This wouldn’t be the last time I got to bend some metal on this thing.

He must be very tall to have taken the picture at that angle!

So I knew I wanted to re-tool the stand such that the legs are vertical. I gave it some thought and realized that I could pivot the legs about one out of the three bolts that connect each side of each leg (i.e., two bolts on each leg – one for each connecting side). I had measured out and cut a bottom shelf from the “low” desk’s MDF surface so I had something to align the legs to. Then I could just use my level and speed square to get the leg alignment. I used a white paint marker to mark the four new holes and number each of the points so I could re-attach them (nominally it wouldn’t matter, but it just helps to reduce error when things otherwise don’t align because nothing’s “nominal”).

After removing 2/3 of the leg bolts, I could rotate the legs to vertical

I used the drill press and my step bit to drill the holes. Drilling steel is significantly more difficult than drilling aluminum (which can be generally cut with woodworking blades or bits). I recently read Adam Savage’s book “Every Tool’s a Hammer” in which he has a chapter titled “Use More Cooling Fluid” and, man, is that every sound advice for cutting steel. I typically call it cutting fluid, but given the amount of smoke I was generating, it was definitely getting hot. Also, unlike aluminum, steel is going to have burs that need to be filed off, even when cutting with a step bit. So I had to clean up each of the sixteen holes drilled.

Always use lots of cutting fluid when drilling steel

I got the legs re-assembled and cut a top surface (also cut from the old bench’s MDF surface). I did have to replace a few of the bolts with spoiled threads but I happened to have some spare 1/4″ bolts & nuts. It was at that point that I realized that the surfaces of bent steel that were formerly parallel to the floor were now about 10° out of flat. Enter the 5 lbs sledge. I basically whacked the hell out of the top lip all around until the to surface lay nearly flat. Using some screws through the mount holes then got it nice and level.

It may be only 5 lbs, but I wore myself out swing that hammer today

The casters are the threaded bolt post type. If you’ve never seen these before, please know that they are the worst. The end of the threaded rod is some weird star thing (no, not a Torx bit) which you cannot hold and just spins with the bolt. So, there’s no real good way to loosen a stuck nut – of which I had two. My design required that these casters come off so that I could use them to also mount the bottom shelf. So, some Liquid Wrench and some vice grips to hold the threaded rod (which messes up the threads some, but wasn’t important as that’s where the shelf now sits), I prevailed.

I absolutely love Vice Grips. I used those a lot on taking all these bent pieces of steel, too.

I finally drilled some holes in the corner of the lower shelf so I could sandwich that shelf with the leg bottom and the caster nut & washer. I had to use the sledge to somewhat flatten out the base of each leg. Otherwise the casters would all be at a tilt towards the center of the cart and it would be miserable to move around. This hammering allowed me to get the nut started on the caster threaded rod. I could then tighten it enough to make the entire thing sturdy again.

Hard to believe that’s the same cart! It fits perfectly and is exactly what I needed.

So, this was a simple adjustment that took me about five hours of work. I couldn’t be happier with the results, though. It rolls smoothly, is plumb and level, and fits perfectly into a tight area. I may put another shelf into this (I still have plenty of leftover MDF!) so that I can store sander belts, band saw blades, fence, etc. But for a project that I didn’t have to buy a single item for, this is exactly what I needed for this space.

  1. He has converted on bay of a 3-car garage to a very nice wood shop with nice power tools. []

Battery Charging Station

This is a small project I came up with an evening last week after cleaning up my shop bench some. I’ve always just sat my battery chargers on top of the bench area, but they take up precious space there. After getting another Ryobi quick charger recently, I figured it was time to make a dedicated space for these.

Small set of shelves for battery chargers and batteries

There’s not shortage of shop projects for this same purpose, but it seems that most folks area ok with putting their chargers on a shelf semi-permanently. I figured I’d need to occasionally get the chargers off the shelf as well, so I built in a small chase so the cords don’t interfere with the French cleat system and can easy come out.

The dimensions of this project are very specific to the set of chargers I have (two different Ryobi and a Bosch), as you can see here. However, I’ve posted my set of plans below and it should be easy to change the dimensions for different chargers. Just make sure to account for the power cords!

My three chargers squeezed perfectly into 1′-5 1/2″ by 5″

I used pocket holes to assemble the entire project (edit – which was made entirely from 3/4″ maple veneer plywood I already had on hand from repairing my kid’s bed). 28 pocket holes is a lot for something this small, but when the back is split as in this design, I wanted to makes sure it was plenty rigid. I could have glued it up as well, but by the time got it all dry fit, I figured that would be overkill. I can always disassemble it and glue it later. The real trick with this was getting to all those pocket holes. Basically, but the shelf fronts on first and then put the back/sides onto the shelves.

Yes, I put eleven pocket holes in a 5″ by 17 1/2″ shelf

Another small thing that made this little project fun: my table saw sled. I’d really been somewhat disappointed in using it. I put a decent amount of work into getting it right but it just wasn’t sliding well. I’d sanded the runners down as much as could (more and I figured there be too much slop). So I just happened to buy some paste wax today as I’d seen it mentioned. It really should be stressed more: put paste wax on your table saw sled runners! The sled glides along with very little force now and cross-cuts are a breeze!

My massive table saw sled on my little Ryobi table saw works great after adding some paste wax!

So this was a good little project and went off with (almost) no mistakes thanks to putting in some decent planning and taking plenty of measurements of what I wanted to store. I saw almost, as the cut-out above the bottom shelf to accommodate the AC adapter was initially cut without accounting for the bottom shelf depth. Another quick pass on the band saw and it fit fine.

The afternoon sun creeping into my workspace

In case you can’t quite read those sheets on my rolling workbench, here are my plans for anyone so inclined to build something like this. One potential modification would be to put some handles (either hardware attached to the top of the sides or handholds cut into the sides) and a bungie cord across the front of the lower shelf. That way, with just unplugging one cord, I could take all my chargers with me.

The Bazz Fuss

You know a project’s been lingering too long when your son – who couldn’t care less about guitar or effects pedals – wonders into your office one day, points to a jumble of wires and components, and asks “are you ever going to finish this thing?”

That “thing” is the bazz fuss circuit I soldered onto a perfboard several months ago. I had watched Paul of DIY Guitar Pedals put together his “5 minute fuzz” effect and had read an article on Seymour Duncan’s site about building the effect with some nice mods to the original circuit. Some more details about the original effect are available here, but essentially it seems Christian Hemmo developed a fuzz effect for the bass that used the fewest components possible (and still generate a decent effect, anyway). The design is extremely elegant and produces a nice “dirt” fuzz effect (probably perfect for bass guitar). Hemmo’s original site is long lost on the internet (ah, Angelfire.com! – still available via Archive.org, though, of course) but his circuit lives on.

The bazz fuss effect on a breadboard with labeled controls

I built my first attempt at a Bazz Fuss effect by wiring the components in my breadboard, following along with the Seymour Duncan article (seriously cannot recommend that article enough). I went through the various iterations on the breadboard in the article and ended up with the “modded” version there-in. I even tried adding a battery sag control as well, to emulate a battery losing its charge which sounds good on some effects. This particular effect is one in which it basically just no longer has enough voltage to make any noise, so it just kills the sound below that threshold. This is the breadboarded effect that I used to demonstrate my test rig, in fact.

Inspired by this Make video on circuit skills on using perfboard to quickly build a circuit, I figured I’d try soldering the components down. I just bent over some longer leads and soldered them to make more-or-less a ground rail and a power rail, and then built the circuit from there. I sketched it all out on graph paper before hand, but the circuit is so simple I had nearly half of the perfboard free after soldering everything.

My initial perfboard circuit

And so this sat on my shelf for months until my son asked about it. I figured I really did need to wrap this thing up before moving on to any other projects. I had purchased a blue powder-coated enclosure for my tremelo kit pedal and had already transferred the guts of that effect to its new home. So I had an enclosure that only needed a couple of holes made larger.

I should note here that I use external nut AC jacks on all my builds. Yes, they stick out further and are less attractive. But, here’s my reasoning:

  • all the other external components (except LEDs) already have external nuts
  • I found that the extra 1/4″ of depth provided using an external nut AC jack really helped in a 1590A enclosure, such as my Micro Amp clone
  • most importantly: I can pull the guts of a pedal out without having to cut a single wire; nothing is actually even necessarily wired after going into the enclosure at all this way!

In the spirit of recycling old parts, one of the resistors I had pulled from my CryBaby Wah mod was the right value for the LED resistor! I don’t even know why I bothered saving it, but I was glad I did. I use some of the spare space on the perfboard to mount the LED and the resistor. I used a bit of hot glue to hold the LED in place (in fact, that’s the only thing holding the entire board in place!).

The LED hot glued into the enclosure – note the old tan, 5% tolerance resistor

I did use sockets for both the diode and the transistor. I don’t know that I’ll ever swap them out, but I have that option. In fact, Paul of DIY Guitar Pedals has an entire video just comparing different combinations. Though my pedal doesn’t have a ton of gain, it sounds pretty good using the BAT41 diode and MPSA13 transistor. You can see where I used a sharpie to mark the orientation for both, as well, because I won’t remember should I ever want to swap them out. On the subject of troubleshooting, I spent a lot of time troubleshooting this build only to ultimately determine the A100k put for the volume was just a bad pot! So I definitely don’t want any more headaches trying to figure out the correct orientation for a diode or transistor. I even got so paranoid, I lined the back of the pots and the back of the perfboad with electrical tape to ensure nothing shorts!

Overall, it’s not the prettiest build I’ve done but it is complete, works, and sounds pretty good. I’m proud that I was able to layout the components in an efficient way (which is of course important to printed circuit board layouts, which I hope to try out at some point).

The finished wiring. What a rat’s nest!

Miter Saw Fix

One of my earliest “nice” tools was a compound miter saw. I bought a “new”1 Ridgid 10″ miter saw about 15 years ago. It’s been pretty handy over the years, but I noticed last year (on my finishing storage rack project) that the fence was bowed. As the blade would cut through he piece, the piece would then pinch into the blade. At best, that just ends up messing up an otherwise clean cut. But worse, it can be a bit dangerous any time a piece is pinched like that (at least with a miter saw, the blade is generally pulling it downward into the support). I searched for a replacement part, but those are no longer available for this model.

Thus it was time to just try to fix it. The fence is a very oddly shaped piece of aluminum. I had to unthread the four hex bolts holding it in place. They were pretty tight, to say the least.

I nearly broke my Allen key set getting these bolts loose

It’s important to have a references for “straight” and for “square” and so any maker should know what the flattest and most square things in their shop are for a true reference. I don’t have any machinist’s squares or a heavy, cast-iron table saw, so I just make do with some aluminum tools that are pretty good. I grabbed the large dry-wall square to use a flat reference. Sure enough, there was about an 1/16″ bow in the fence.

Tough to capture with a cell phone camera, but both points in the middle are off the straight edge

I placed some scrap pieces on the garage floor and used a 4lb sledge to hammer the center of the fence. Aluminum is a brittle metal, so I had to go slow. This usually mean 1-2 firm whacks and then check to see if it was level. I actually went a bit too far, and the fence started rocking side-to-side on my straight edge. A couple of whacks on the other side got it right on. I did have to shore up one side as the points nearest the blade weren’t in line any more (or maybe they never were?).

Precision sledge work

This was the most tedious part, but I got it so I could just slide a piece of paper under it. That’s going to be about as accurate as I can get using this method I think.

A lot of effort to close a very small gap

The fence is attached with round (or fixed) holes on one side and slotted (or adjustment) holes on the other. I got the fence placed on one side and then used my aluminum speed square on the other. This is where a good machinist’s square would be used if I owned one, but again – this whole fix is a bit rough anyway, so the speed square is good enough.

Not the ideal square device

I also noticed that in addition to the “fixed” fence having been warped, which would have just resulted in the same issues. So I quickly adjusted that one too (no sledge hammer required).

While tightening the main fence, I noticed the bolt-on wing wasn’t in line

A quick test cut and I immediately could tell the piece didn’t move a bit as soon as the blade cut through. And, just as important, it was square! (well as sure of square as I can be with my tools!)

  1. Though as it turns out, it had been used to cut some stuff and returned (probably by some 2nd rate contractor), only to be sold as “new” by Home Depot. But it worked fine and I needed it for something at the time, so I just lived with it. []

Electro-Harmonix Small Stone Mods

This project has been “in the works” for a while. I’ve had the pedal working for sometime but finally got around making the modifications to make it a modern pedal.

EH Small Stone with working LED indicator

Let’s start with a bit of backstory: Last summer, my wife and I were helping to clean out my late father-in-laws tool shed. He had a lot of stuff and a lot of that stuff was entirely random. One such item was a late 70’s Electo-Harmonix Small Stone phase shifter. It was in decent shape, but upon opening it, the 9v battery corroded and ruined the battery snap. So it was unusable as-is. There’s not a definitive way to date it, but the pot is labeled 1377825, which means it was manufactured the week of June 19th (25th week) of 1978 by CTS (manufacturer’s code 137). So the pedal was likely build and sold in late 1978 or 1979.

EH Issue J board: the red (9v for LED), gray (ground), green (signal in) and yellow (signal out) wires were ones added as part of this mod

The Small Stone is the other phaser sound from the late 70’s, where as the MXR Phase 90 is the one that Eddie Van Halen made famous (I have some theories on why that might have been, too.). That being said, it’s a great sounding phaser. I’m not a fan of the color switch on, personally1. But with the switch off, the effect has got a rich, space-y sound. This particular pedal just needed a bit of love.

The first thing was to put in a new battery snap to power the pedal. This pedal had a 1/8″ audio jack-style power jack. There are adapters for using this with a modern, Boss-style (2.1 mm barrel) DC power plug. However, it was a pretty simple operation to just drill out the case a bit larger and install a modern power jack. That got the pedal working again and how it stayed for about a year. And it sounded great.

Well, except for one issue and it’s why I think this pedal was never nearly as popular as the MXR or, for that matter, many of EH’s other pedals such as the Big Muff π. That is there is a serious volume drop when the effect is on. Imagine Eddie Van Halen turning the effect on for the drop-C# chug in “Unchained” and then back off for the chord progression. The riff would be ruined! 2. So I really wanted to fix that. Fortunately, 40+ years of history with this design and folks have figured out ways to address the issue. There are two resistor values that can be changed that dramatically improve the volume drop. I swapped out R11 and R42 and a quick test (outside of the case) saw the issue improve dramatically.

Mods completed: 1) Boss-style AC jack, 2) LED indicator, 3) resistors swapped for volume drop (blue resistors), and 4) true-bypass switch wiring

The bypassing mechanism on this pedal was fairly transparent. I personally can’t tell much of a difference when it’s in my signal chain or not. However, I did decide to make it a true bypass pedal along with the other mod, mainly just to add an indicator LED. Though I’m not a serious guitar player and never actually play live (or record), I do like having indicator lights on effects. If nothing else, it just reminds me to turn them all off when I’m done playing for a bit as a break during work hours! The updated switch, even just a cheaper “Taiwan blue” is still a lot less of a “ka-chunk!” than the old switch, too.

The last step was to drill out the hole for the LED bezel. Drilling steel is a bit harder than aluminum. I used a step bit as usual, but cutting fluid is a must in this case. Unfortunately, a couple of steel shavings scratched rings around the opening as I was drilling. I can probably buff them out, but a simple piece of painters tape would have protected the surface when drilling (and I usually think of that when it’s a powder-coated enclosure!). I boxed up the effect, plugged it in, and SQUEAL-EEE-OOO-EEAAA! Turns out, the output jack can rotate just a bit and short out on the color switch connectors. A small piece of black electrical tape fixed that, though.

Black electrical tape over the color switch connectors to prevent it from shorting on the output jack

Reverb has these vintage v7 Small Stone pedals going from between about $150 to $200, depending on their condition (they retailed for around $80 back in the 70’s). Even non-functioning, this one could have sold for $75-$100 (which would have easily covered the cost of a modern “Nano” re-issue model). So did I reduce its value? Maybe. Maybe not. There are some modded Small Stones also sold on Reverb going for even more. Many of those have additional controls added or the ability to attach expression pedals or other more significant modifications.

However, none of that is really the point for me. I think it’s really cool that this particular one belonged to someone in Angela’s family (most likely her late uncle, John, who played guitar some). I think of all the effects in my collection, this would be one I’d never really want to part with anyway. It’s got some real history; used by people I knew. And it’s been fun to take it and make it hopefully even better than before. It sounds great and though it may not have been the phaser I would have bought otherwise, it’s even better to me.

With all apologies to EVH, my incredibly rough take on the intro riff to “Unchained”

Some notes on that demo: first of all, it’s just recorded from my iPhone X on a tripod (as if the leg wasn’t the giveaway). The iPhone attempts to level out sound, so trying to show that the volume doesn’t drop when the pedal is engaged in this recording isn’t too useful. Next, even though you can clearly hear the switch clicking, it’s truly just because the amp volume is relatively low. There’s no pop through the amp. Lastly, I’m barely passable at playing this riff and trying to coordinate the pedal on-and-off with it was a particularly challenge for me.

  1. The color switch seems to add second layer of phasing at a slower rate than the first so there’s a weirder change amplitude. I think this was more popular with organ and electric piano players than guitarists. I certainly can’t think of any recordings where I may have heard that color switch effect. []
  2. I’m not saying EVH ever actually even used one of these… In fact, after about 5 min of research, EVH actually used a flanger rather than a phaser for that particular song; but he did and does famously use a phaser for other songs such as Ain’t Talkin’ Bout Love), but for anyone who did they surely would have noticed the volume drop. []

LED Wiring

This is a basic element of many electronics projects: how to wire up an LED with a current limiting resistor. Most effects have a 5 mm LED and many wiring diagrams show a 4k7Ω resistor. There’s a fairly wide range of values you can use, depending on how bright you want the LED (and what the LED’s specs are). You can calculate out the exact value to use if you have the specs for an LED, but using a 4k7Ω works well enough for most situations.

What’s a bit less obvious is how to solder a resistor’s legs to an LED leg and the connecting wires. Here’s my method:

  1. Using a pair of craft tweezers, I roll up the positive leg of the LED.
  2. Then take the resistor leg and bend it through this loop, then twist it around once. This forms a chain-like connection.
  3. Solder this connection and then trim the resistor leg back.
  4. Curl up the outstanding leg of the resistor in a similar fashion.
  5. Bend the tinned tip of your hookup wire at a 90° and hook around this loop to solder just like you would a jack connection.
  6. Curl up the negative leg and solder a 90° bend from another hookup wire to this end.
  7. Apply heat-shrink tubing over both connections. I picked up using the barrel of soldering iron from Collin of CS Guitars.

You could do NASA-spec solder joints if you want, but this is typically more than strong enough for connections. As for the resistor, it doesn’t really matter which leg you attach it (that is, before or after the LED in the circuit) as it will have the same effect. However, by definition, current will only flow through a diode in one direct, so it does matter that you have the LED leads clearly identified. That’s why I try to be consistent with using red as the positive (and typically black for the negative, but I was out of black hook-up wire during this particular project).

Shop Air Filter Installation

My garage is sort of organized, but it’s covered in dust. I knew it was getting bad and so I ordered a relatively inexpensive air filter for shop spaces. I’d had my eye on the WEN 3410 3-speed air filter for a while. Home Depot has the best price for this item, but it’s routinely out-of-stock. It came back in stock in February so I ordered one then. It arrived, I plugged it up just to make sure it worked, and then it sat on my workbench for the past 6 weeks or so.

The WEN Air Filter installed

I had purchased the necessary hanging hardware a couple of weeks later, but still didn’t get around to hanging it up. You see, our garage has really high ceilings (12′-6″) and the dinky 12″ chains that are packed in the box weren’t going to cut it. The instructions state to hang it at least 7′ above the floor, but I’m pretty sure 11′ in the air isn’t going to capture a lot of dust. I purchased some pre-punched angle and about 20′ of 300lb chain. But still, this all sat on the workbench (ok, so maybe my garage is less organized than I’d like…).

So, today I finally decided it would the be the day to install this thing. And apparently none too soon. My son wanted to go over to his friend’s house but told me he didn’t want to ride his bike because it was covered in dust (he’s not wrong, but we got it down and aired the tires anyway).

My first time cutting steel with a cutting wheel on an angle grinder

So the angle I purchases was a 4′ section, and I needed to cut it in half. I also bought a cutting wheel for my angle grinder. This was actually the first time I’d ever cut steel with an angle grinder. I did wear a full face shield but didn’t cover my arms. The sparks were minimal, but I wouldn’t wanted to have cut several that way. I could have uses the same cutting wheel to cut the chains to length, but my bolt cutter was faster.

The first angel and chains installed (that’s a 9′ ladder by the way)

After that, it was just a matter of getting the angles lag screwed into the ceiling joists. I used some threaded quick links to attach the chains, just in case the unit started swinging around. That proved to not be a problem. Frankly, this was probably all overkill to hang a 31 lb unit, but it’s room to grow if I need something bigger.

I had to add an extension cord to get it plugged into the same outlet as my garage door opener and my retractable extension cordBy the way, the retractable extension cord is one of the single best items I’ve gotten for my shop. Between that and my rolling workbench, it feels like having a whole new shop area.. Then it was ready to test. Admittedly, this isn’t a very powerful air filter. At full speed, it’s 400 cfm. Fortunately, that’s not enough to get it moving hanging from hose 4′-6″ chains.

Air filter and garage door motor sharing some ceiling space

I don’t yet have much of a sense of how well it works, but it gets pretty good reviews. I’ll put it to the test soon enough by taking my air compressor to start blowing dust off of everything.

Amp Channel Footswitch

Most amps have the ability to use an external footswitch to change between a clean and distortion channel. Of course, some have more sophisticated options than this, but the channel switch is a pretty common feature. My older brother recently got an awesome-looking, orange Fender Duo-Sonic and a small Fender practice amp to play it through. This little Mustang amp has a lot of presets and he can use a footswitch to select between a pair of them. Of course, it being an affordable practice amp, the footswitch is sold separately.

But a footswitch is a pretty easy thing to make yourself. In my case, I had the double pole single throw (DPST) footswitch taken out of my Dunlop Wah pedal when I modded it (post to come someday!) and an old stereo audio jack. That, a bit of wire, and something to put it in is all you need! In fact, the fact that it was a double pole switch and a stereo jack made them both overkill for this small project! But why not recycle the parts for a good cause?

I purchased a powder-coated 1590LB enclosure from Mammoth Electronics. At 2″ by 2″ by 1″ tall, this is about as small an enclosure as you can get, but plenty big for a small switch and a jack. I got the orange to match his guitar (well, as close as I can get with stock powder coat colors, anyway). I laid out the switch and jack to ensure I could arrange them how I wanted; though I could have also just had the jack on the “side” of the enclosure. The circuit soldering here is super-simple: just solder the “tip” lug of the jack to the center lug of one of the poles (three of the lugs in a line make a pole). Then solder the “sleeve” lug of the jack to either the left or right lug on the same poll of the switch. That’s it! Did you mess up and wire the sleeve to the center lug on the switch? It’s still fine! All this does is connect the tip to the sleeve when the switch is “on” and then breaks the circuit between the two when it’s off.

Now, this particular build relies on an instrument cable to connect the footswitch to your amp. But you don’t have to use a shielded cable for this as the guitar signal itself isn’t passing through that cable; just a relatively low voltage (around 4-5v1) is flowing through to tell the amp the gain channel should be on. So you could actually skip the jack and just use any old wire (speaker cable, a lamp cord, etc.) and wire that into a 1/4″ audio cable end. I was just using as many spare parts as I could. In fact, I finished the bottom by cutting up a kitchen jar grip pad and gluing it to the bottom with spray adhesive (it won’t slide on his hardwood floor!).

Given that the Fender single footswitch costs around $15, this probably is not much of a cheaper alternative. But it was a fun gift for my brother and if you’re interested in practicing some soldering, this is a great and practical project to start with!

So, amazingly enough, there’s a video in which YouTube channel MerwinMusic makes the exact same footswitch as mine – down to the orange color! Check it out! He also does a great job of explaining how to test out that this sort of switch works with your amp before you go to the trouble of building one, which is a good idea as some amps may vary (but all good amps just copy Leo’s original!).

I built this exact same project almost!
  1. The voltage is low enough that my Blackstar head’s footswitch doesn’t even have a resistor on the LED. []

Mini MicroAmp Build

With each new pedal build, I try to focus on some aspect that makes it a new challenge or something new to learn. My first pedal build ever (about 18 months ago) was a boost pedal. I decided I’d build another boost: this one using the MXR MicroAmp circuit. I used the General Guitar Gadgets MAMP PCB, which in addition to selling the PCB sells entire kits and has excellent documentation1. Since it’s a relatively simple circuit and, therefore a fairly small PCB, I wanted to try to fit it into a “mini” enclosure (i.e., a 1590A format). This means having to really think ahead about aspects of the build so that everything can squeeze into such a relatively small enclosure.

The completed enclosure, including the mis-aligned hole for the input jack on the right side

The first thing is that this pedal format can’t utilize a battery for power; the pedal will be AC powered only. That’s fine as I don’t use batteries in any pedal anyway and only ever added a battery snap to that first pedal build. Secondly, the height of the components really matters. The taller components (generally, the capacitors) had to be bent over. For the electrolytic capacitors, I had to remove and replace a couple in order to facilitate this (I had planned ahead otherwise – as my sketched notes on the wiring diagram shows below, but I am just so in the habit of soldering the completely vertical I forgot!). In the end, the tallest component off the PCB was the integrated circuit (IC), as it was mounted in a socket. This way I can potentially swap out ICs in the future. Speaking of ICs, I went with a low-noise TL071 op-amp (in place of the original pedal’s TLo61 – which consumes less current but, again, I’m not using a battery so I don’t really care about that). The only other modification I made to the GGG circuit was that I swapped out a 10MΩ in place of the 22MΩ pull-down resistor (R1). Really, any fairly large (<1MΩ) resistor value will do here and 22MΩ are a little harder to find.

The completed wiring. This was a tight fit! Notice all the taller capacitors look like a strong wind came through.

Lastly, the arrangement of the larger off-board components such as the footswitch, jacks, LED bezel, and pot really came down to millimeters. I had to use calipers to measure every last item and meticulous sketch it out on a printout of the enclosure. I still managed to mess up drilling one of the jack holes (I located it 1/2 the diameter off, which s about the worst place to mess it up!). I was able to re-drill the hole thanks to having a drill press and some clamping blocks. It’s a bit ugly and the jack’s nut is a bit crooked, but it worked out fine.

Re-drilling a hole for the output jack. Drill press & clamps absolutely required to fix this sort of bone-headed mistake.

The pedal works great. I mean, it’s about as simple an effect as you can get. It simply takes the guitar signal and makes it a lot louder (probably around the order of 20-25db). I’m pretty pleased with how clean the wiring worked out, as well.

My build cost around $27 for the parts I had to purchase. That’s not including resistors, capacitors, diode, and LED (nor hookup wire and solder), all of which I already had in my parts bins but would run you around $3 in total. I also had to pay around $9 in shipping. The PCB from GGG for was about $3.50 to ship. I bought parts for several builds at once in a large order from Mammoth Electronics (my parts supplier of choice), but smaller orders from there tend to ship for around $5. They have high-quality powder-coated enclosures for really great prices, along with generally good prices on other parts and kits. So, in total, this build is roughy around $39 in cost (and I still haven’t added any artwork, so consider what slide decal or other format might cost).

That being said, unless you really want to build your own, I would not recommend this build to anyone else. You can purchase a TC Electronic Spark for about $35 used on Reverb.com (plus shipping) right now. It has the exact same size as my build, but has their amazing non-latching (relay) footswitch and essentially the same amount of clean boost. If you don’t care about size, you can purchase a used MXR MicroAmp for around $49 on Reverb (plus shipping). Both of those are solid choices if you really just want a boost pedal and are less interested in practicing your soldering skills or learning how to layout a small pedal form factor. And honestly, as much as I think this pedal sounds great so far, those probably sound even better and have less noise at full gain.

But overall, I’m pleased with this build. On the clean channel, it just gets louder without adding anything else noticeable. Best of all: with the knob set to about 3 o’clock, it makes my Blackstar HT-5R head’s gain channel absolutely breathe fire!

  1. I think I could have pretty easily build this circuit on perfboard, but probably not to fit in the this small of an enclosure. So for a bit more cost I opted for the PCB, which has a fairly small footprint. []